<u>Dashboard</u> / My courses / <u>INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta</u> / <u>General</u> / <u>Second Exam</u>

Started on Sunday, 10 January 2021, 9:46 AM

State Finished

Completed on Sunday, 10 January 2021, 11:01 AM

Time taken 1 hour 14 mins

Grade 23.00 out of 32.00 (**72**%)

Question 1

Correct

Mark 1.00 out of 1.00

If A is an n imes n singular matrix, then

Select one:

lacksquare a. The columns of A are linearly dependent

~

- \circ b. $N(A)=\{0\}$
- \circ c. rank(A)=n
- \circ d. The rows of A are linearly independent

The correct answer is: The columns of A are linearly dependent

Question 2

Correct

Mark 1.00 out of 1.00

The rank of
$$A=egin{pmatrix} 1 & 4 & 1 & 2 & 1 \ 0 & 6 & -1 & 2 & -1 \ 3 & 10 & 0 & 4 & 1 \end{pmatrix}$$
 is

Select one:

- \circ a. 1
- \circ b. 2
- \circ c. 4
- d. 3
 - ~

The correct answer is: 3

Question **3**

Incorrect

Mark 0.00 out of 1.00

If A is an m imes n-matrix, and columns of A are linearly independent, then

Select one:

- \circ a. $n \leq m$
- \bigcirc b. m=n
- \odot c. $m \leq n$

×

 $\quad \ \, 0.\,\,m=n+1$

The correct answer is: $n \leq m$

Correct

Mark 1.00 out of 1.00

If $v_1,v_2,\cdots,v_n\in V$, $\dim(V)=n$ and v_1,v_2,\cdots,v_n are linearly independent, then Span $(v_1,v_2,\cdots,v_n)=V$, .

Select one:

- a. False
- b. True

The correct answer is: True

Question **5**

Correct

Mark 1.00 out of 1.00

If A is a 4×3 matrix such that $N(A) = \{0\}$, and b can be written as a linear combination of the columns of A, then

Select one:

lacksquare a. The system Ax=b has exactly one solution

~

- \circ b. The system Ax=b has exactly two solutions
- \circ c. The system Ax=b is inconsistent
- lacktriangle d. The system Ax=b has infinitely many solutions

The correct answer is: The system Ax=b has exactly one solution

Question 6

Correct

Mark 1.00 out of 1.00

Let A be a 3 imes 5 matrix, and $\mathsf{nullity}(A) = 2$, then the columns of A form a aspanning set for \mathbb{R}^3

Select one:

- a. False
- b. True

 ✓

The correct answer is: True

Question **7**

Incorrect

Mark 0.00 out of 1.00

Let V be a vector space, $v_1,v_2,\ldots v_n\in V$ be linearly independent, and $v\in V$, then the vectors $v_1,v_2,\ldots v_n,v$ are linearly independent.

Select one:

- a. True x
- b. False

The correct answer is: False

Correct

Mark 1.00 out of 1.00

If $\{v_1,v_2,v_3,v_4\}$ is a basis for a vector space V , then the set $\{v_1,v_2,v_3\}$ is

Select one:

- a. linearly dependent and a spanning set
- ullet b. linearly independent and a spanning set for V.
- ullet c. linearly dependent and not a spanning set for V.
- lacksquare d. linearly independent and not a spanning set for V.

~

The correct answer is: linearly independent and not a spanning set for V.

Question 9

Correct

Mark 1.00 out of 1.00

Let
$$S=\{egin{pmatrix} a+b+2c\ a+2c\ a+b+2c \end{pmatrix}: a,b\in\mathbb{R}\}.$$
 Then dimension of S equals

Select one:

- \circ a. 3
- \circ b. 0
- \circ c. 1
- lacksquare d. 2

~

The correct answer is: 2

Question 10

Correct

Mark 1.00 out of 1.00

If A is an m imes n-matrix, and columns of A form a spanning set for \mathbb{R}^m , then

Select one:

- \circ a. $n \leq m$
- \bigcirc b. m=n+1
- \odot c. $m \leq n$

~

 \circ d. m=n

The correct answer is: $m \leq n$

Question 11

Correct

Mark 1.00 out of 1.00

If $T_{n imes n}$ is a transition matrix between two bases for a vector space V , $\dim(V)=n>0$, then

Select one:

- lacksquare a. $\operatorname{\mathsf{nullity}}(T) = n$
- lacksquare b. T is nonsingular

~

- \circ c. rank(T)=1
- \circ d. $\det(T)=1$

The correct answer is: T is nonsingular

Correct

Mark 1.00 out of 1.00

If the columns of $A_{n imes n}$ are linearly independent and $b\in\mathbb{R}^n$, then the system Ax=b has

Select one:

- a. exactly one solution
- b. infinitely many solutions
- c. no solution
- d. exactly 2 solutions

The correct answer is: exactly one solution

Question 13

Incorrect

Mark 0.00 out of 1.00

Let
$$S=\{f\in C[-1,1]: f(-1)=f(1)\}$$
 , then S is a subspace of $C[-1,1].$

Select one:

- a. False x
- b. True

The correct answer is: True

Question 14

Correct

Mark 1.00 out of 1.00

If A is a 3 imes 5-matrix, rows of A are linearly independent, then

Select one:

- \circ a. $\mathsf{rank}(A) = \mathsf{nullity}(A) + 3$
- \circ b. $\mathsf{rank}(A) = \mathsf{nullity}(A) + 2$
- ${ extstyle }$ c. ${\sf rank}(A) = {\sf nullity}(A) + 1$

~

 \bigcirc d. rank $(A) = \mathsf{nullity}(A)$

The correct answer is: $\operatorname{rank}(A) = \operatorname{nullity}(A) + 1$

Question 15

Correct

Mark 1.00 out of 1.00

If
$$A=egin{pmatrix}1&-2&-1&0\\-1&2&2&0\\2&-4&0&0\end{pmatrix}$$
 , then $\mathrm{rank}(A)=3.$

Select one:

- a. True
- b. False

The correct answer is: False

Incorrect

Mark 0.00 out of 1.00

Let
$$S=\{inom{x}{y}\in\mathbb{R}^2: x+y=0\}$$
 , then S is a subspace of \mathbb{R}^2 .

Select one:

- a. False X
- ob. True

The correct answer is: True

Question 17

Incorrect

Mark 0.00 out of 1.00

The vectors $\{x-1,2x^2+x+5,x^2+x+2\}$ form a basis for P_3 .

Select one:

- a. True x
- b. False

The correct answer is: False

Question 18

Correct

Mark 1.00 out of 1.00

Every spanning set for \mathbb{R}^3 contains at least 3 vectors.

Select one:

- a. False
- b. True

 ✓

The correct answer is: True

Question 19

Correct

Mark 1.00 out of 1.00

Let V be a vector space of dimension 4 and $W=\{v_1,v_2,v_3,v_4,v_5\}$ a set of nonzero vectors of V, then

Select one:

- \circ a. W is linearly independent
- igcup b. W is a spanning set
- \circ c. W is a basis
- lacksquare d. W is linearly dependent

~

The correct answer is: W is linearly dependent

Incorrect

Mark 0.00 out of 1.00

Let $E=[2+x,1-x,x^2+1]$ be an ordered basis for P_3 . If $p(x)=2x^2+6x+5$, then the coordinate vector of p(x) with respect to E is

Select one:

- \circ a. $\begin{pmatrix} 3 \\ -3 \\ 2 \end{pmatrix}$

×

- \circ c. $\begin{pmatrix} 3\\2\\-3 \end{pmatrix}$
- \bigcirc d. $\begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$

The correct answer is: $\begin{pmatrix} 3 \\ -3 \\ 2 \end{pmatrix}$

Question 21

Incorrect

Mark 0.00 out of 1.00

The coordinate vector of 8+6x with respect to the basis [2,2x] is $(4,3)^T$

Select one:

- a. True
- b. False x

The correct answer is: True

Question **22**

Incorrect

Mark 0.00 out of 1.00

Let A be a 5 imes 4 matrix, and $\operatorname{rank}(A)=4$

Select one:

a. A has a row of zeros

×

- igcup b. The columns of A are linearly independent
- \circ c. The rows of A are linearly independent
- \circ d. $\mathsf{nullity}(A) = 1$

The correct answer is: The columns of A are linearly independent

Question 23

Correct

Mark 1.00 out of 1.00

The vectors $\{(1,-1,1)^T,(1,-3,2)^T,(1,-2,0)^T\}$ form a basis for \mathbb{R}^3 .

Select one:

- a. False
- b. True

 ✓

The correct answer is: True

Question 24

Correct

Mark 1.00 out of 1.00

dimension of the subspace $S=\operatorname{Span}\left\{A_1=\begin{pmatrix}0&2\\1&1\end{pmatrix},A_2\begin{pmatrix}3&-1\\1&0\end{pmatrix},A_3=\begin{pmatrix}6&-8\\-1&-3\end{pmatrix}\right\}$ is

Select one:

- \circ a. 3
- 0 b. 1
- © c. 2
 - ~
- \circ d. 0

The correct answer is: 2

Question 25

Correct

Mark 1.00 out of 1.00

If A is a 4×6 matrix, then nullity of $A \geq 2$.

Select one:

- a. False
- b. True

 ✓

The correct answer is: True

Question **26**

Correct

Mark 1.00 out of 1.00

If v_1,v_2,\cdots,v_k are vectors in a vector space V, and $\mathrm{Span}(v_1,v_2,\cdots,v_k)=\mathrm{Span}(v_1,v_2,\cdots,v_{k-1})$, then v_k can be written as alinear combination of v_1,v_2,\cdots,v_{k-1}

Select one:

- a. False
- b. True

 ✓

The correct answer is: True

Question **27**

Incorrect

Mark 0.00 out of 1.00

Let E=[3-x,2+x] , F=[1,x] be ordered bases for $P_2.$ The transition matrix from E to F is

Select one:

- \circ a. $\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$
- \bigcirc b. $\begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix}$

×

 \bigcirc d. $\begin{pmatrix} -1 & 1 \\ 3 & 2 \end{pmatrix}$

The correct answer is: $\begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix}$

Correct

Mark 1.00 out of 1.00

If A is a nonzero 4 imes 2-matrix and Ax = 0 has infinitely many solutions, then $\mathrm{rank}(A) =$

Select one:

- \odot a. 1
 - ~
- \circ b. 4
- \circ c. 3
- \circ d. 2

The correct answer is: 1

Question 29

Correct

Mark 1.00 out of 1.00

The transition matrix from the standard basis $S=\left[e_1=\left(1\atop 0\right),e_2=\left(0\atop 1\right)\right]$ to the ordered basis

$$U=\left[u_1=\left(rac{1}{2}
ight),u_2=\left(rac{3}{7}
ight)
ight]$$
 is

Select one:

$$\bigcirc$$
 a. $T=egin{pmatrix}1&3\2&7\end{pmatrix}$

$$\circ$$
 b. $T=\left(egin{array}{cc} 1 & -3 \ -2 & 7 \end{array}
ight)$

$$lacksquare$$
 c. $T=egin{pmatrix} 7 & -3 \ -2 & 1 \end{pmatrix}$

~

$$\bigcirc$$
 d. $T=egin{pmatrix} -7 & 3 \ 2 & -1 \end{pmatrix}$

The correct answer is: $T=\left(egin{array}{cc} 7 & -3 \ -2 & 1 \end{array}
ight)$

Question 30

Correct

Mark 1.00 out of 1.00

Let $S=\left\{p(x)=ax^2+bx+c\in P_3:\int\limits_0^1p(x)\;dx=0
ight\}$. The dimension of S is.

Select one:

- \circ a. 4
- \circ b. 3
- O c.
- lacksquare d. 2

~

The correct answer is: 2

Correct

Mark 1.00 out of 1.00

Let A be a 4 imes 3 matrix, and $\operatorname{nullity}(A) = 0$, then

Select one:

- igcup a. the columns of A form a basis for \mathbb{R}^4
- igcup b. The rows of A are linearly independent
- $\ igllet$ c. The columns of A are linearly independent

~

 ${}$ d. rank(A)=1

The correct answer is: The columns of A are linearly independent

Question **32**

Correct

Mark 1.00 out of 1.00

Let V be a vector space, $v_1,v_2,v_3\in V$ such that v_1,v_2 are linearly independent, v_2,v_3 are linearly independent, and v_1,v_3 are linearly independent, then v_1,v_2,v_3 are linearly independent.

Select one:

- a. False

 ✓
- b. True

The correct answer is: False

Jump to...

Announcements ▶

<u>Data retention summary</u>