Started on Sunday, 10 January 2021, 9:46 AM
State Finished
Completed on Sunday, 10 January 2021, 11:01 AM
Time taken 1 hour 14 mins
Grade 23.00 out of 32.00 ($\mathbf{7 2 \%}$)

Question 1

Correct
Mark 1.00 out of 1.00

Question 2

Correct
Mark 1.00 out
of 1.00

If A is an $n \times n$ singular matrix, then
Select one:

- a. The columns of A are linearly dependent
b. $N(A)=\{0\}$
c. $\operatorname{rank}(A)=n$
d. The rows of A are linearly independent

The correct answer is: The columns of A are linearly dependent

The rank of $A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 1 \\ 0 & 6 & -1 & 2 & -1 \\ 3 & 10 & 0 & 4 & 1\end{array}\right)$ is
Select one:
a. 1
b. 2
C. 4
(d. 3
\checkmark

The correct answer is: 3

Question 3
Incorrect
Mark 0.00 out of 1.00

If A is an $m \times n$-matrix, and columns of A are linearly independent, then

Select one:
a. $n \leq m$
b. $m=n$
() c. $m \leq n$
\times
d. $m=n+1$

The correct answer is: $n \leq m$

Question 4
Correct
Mark 1.00 out of 1.00

Question 5
Correct
Mark 1.00 out of 1.00 \qquad
If $v_{1}, v_{2}, \cdots, v_{n} \in V, \operatorname{dim}(V)=n$ and $v_{1}, v_{2}, \cdots, v_{n}$ are linearly independent, then Span $\left(v_{1}, v_{2}, \cdots, v_{n}\right)=V$,

Select one:
a. False
© b. True \downarrow

The correct answer is: True

If A is a 4×3 matrix such that $N(A)=\{0\}$, and b can be written as a linear combination of the columns of A, then

Select one:
(a. The system $A x=b$ has exactly one solution
b. The system $A x=b$ has exactly two solutions
c. The system $A x=b$ is inconsistent
d. The system $A x=b$ has infinitely many solutions

The correct answer is: The system $A x=b$ has exactly one solution

Question 6
Correct
Mark 1.00 out of 1.00

Let A be a 3×5 matrix, and nullity $(A)=2$, then the columns of A form a aspanning set for \mathbb{R}^{3} Select one:
a. False
© b. True

The correct answer is: True

Question 7
Incorrect
Mark 0.00 out of 1.00

Let V be a vector space, $v_{1}, v_{2}, \ldots v_{n} \in V$ be linearly independent, and $v \in V$, then the vectors $v_{1}, v_{2}, \ldots v_{n}, v$ are linearly independent.

Select one:
(a) arue \mathbf{x}b. False

The correct answer is: False

Question 8
Correct
Mark 1.00 out of 1.00

If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a vector space V, then the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is
Select one:
a. linearly dependent and a spanning set

- b. linearly independent and a spanning set for V.
c. linearly dependent and not a spanning set for V.
© d. linearly independent and not a spanning set for V.

The correct answer is: linearly independent and not a spanning set for V.

Question 9
Correct
Mark 1.00 out of 1.00

Let $S=\left\{\left(\begin{array}{c}a+b+2 c \\ a+2 c \\ a+b+2 c\end{array}\right): a, b \in \mathbb{R}\right\}$. Then dimension of S equals
Select one:
a. 3
-b. 0
c. 1
(d. 2

The correct answer is: $\mathbf{2}$

Question 10

Correct
Mark 1.00 out of 1.00

If A is an $m \times n$-matrix, and columns of A form a spanning set for \mathbb{R}^{m}, then
Select one:
a. $n \leq m$
b. $m=n+1$
© c. $m \leq n$
d. $m=n$

The correct answer is: $m \leq n$

Question 11

Correct
Mark 1.00 out of 1.00

If $T_{n \times n}$ is a transition matrix between two bases for a vector space $V, \operatorname{dim}(V)=n>0$, then Select one:
a. $\operatorname{nullity}(T)=n$b. T is nonsingular
c. $\operatorname{rank}(T)=1$
d. $\operatorname{det}(T)=1$

Question 12
Correct
Mark 1.00 out of 1.00

If the columns of $A_{n \times n}$ are linearly independent and $b \in \mathbb{R}^{n}$, then the system $A x=b$ has
Select one:

- a. exactly one solution
b. infinitely many solutionsc. no solutiond. exactly 2 solutions

The correct answer is: exactly one solution

Question 13
Incorrect
Mark 0.00 out
of 1.00

Let $S=\{f \in C[-1,1]: f(-1)=f(1)\}$, then S is a subspace of $C[-1,1]$.
Select one:

- a. False \boldsymbol{x}
b. True

The correct answer is: True

Question 14
Correct
Mark 1.00 out of 1.00

Question 15
Correct
Mark 1.00 out of 1.00

If A is a 3×5-matrix, rows of A are linearly independent, then
Select one:
a. $\operatorname{rank}(A)=\operatorname{nullity}(A)+3$b. $\operatorname{rank}(A)=\operatorname{nullity}(A)+2$
© c. $\operatorname{rank}(A)=\operatorname{nullity}(A)+1$
d. $\operatorname{rank}(A)=\operatorname{nullity}(A)$

The correct answer is: $\operatorname{rank}(A)=\operatorname{nullity}(A)+1$

If $A=\left(\begin{array}{cccc}1 & -2 & -1 & 0 \\ -1 & 2 & 2 & 0 \\ 2 & -4 & 0 & 0\end{array}\right)$, then $\operatorname{rank}(A)=3$.
Select one:
a. Trueb. False

The correct answer is: False

Question 16
Incorrect
Mark 0.00 out of 1.00

Let $S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x+y=0\right\}$, then S is a subspace of \mathbb{R}^{2}.
Select one:
© a. False \boldsymbol{x}
ob. True

The correct answer is: True

Question 17
Incorrect
Mark 0.00 out of 1.00

Question 18
Correct
Mark 1.00 out
of 1.00

The vectors $\left\{x-1,2 x^{2}+x+5, x^{2}+x+2\right\}$ form a basis for P_{3}.
Select one:
© a. True \boldsymbol{x}
b. False

The correct answer is: False

Every spanning set for \mathbb{R}^{3} contains at least 3 vectors.
Select one:
a. False
© b. True \downarrow

The correct answer is: True

Question 19

Correct
Mark 1.00 out of 1.00

Let V be a vector space of dimension 4 and $W=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ a set of nonzero vectors of V, then

Select one:
a. W is linearly independent
b. W is a spanning se \dagger
c. W is a basis
© d. W is linearly dependent

The correct answer is: W is linearly dependent

Question 20
Incorrect
Mark 0.00 out of 1.00

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $p(x)=2 x^{2}+6 x+5$, then the coordinate vector of $p(x)$ with respect to E is

Select one:
a. $\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)$
(ob. $\left(\begin{array}{c}2 \\ -3 \\ 3\end{array}\right)$
\times
c. $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$
d. $\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)$

Question 21
Incorrect
Mark 0.00 out of 1.00

The coordinate vector of $8+6 x$ with respect to the basis $[2,2 x]$ is $(4,3)^{T}$

Select one:

- a. True
- b. False \mathbf{x}

The correct answer is: True

Question 22
Incorrect Mark 0.00 out of 1.00

Let A be a 5×4 matrix, and $\operatorname{rank}(A)=4$
Select one:

- a. A has a row of zeros
\times
b. The columns of A are linearly independent
c. The rows of A are linearly independent
d. $\operatorname{nullity}(A)=1$

The correct answer is: The columns of A are linearly independent

Question 23
Correct
Mark 1.00 out of 1.00

The vectors $\left\{(1,-1,1)^{T},(1,-3,2)^{T},(1,-2,0)^{T}\right\}$ form a basis for \mathbb{R}^{3}.
Select one:
a. False
© b. True

The correct answer is: True

Question 24
Correct
Mark 1.00 out of 1.00
dimension of the subspace $S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right), A_{2}\left(\begin{array}{cc}3 & -1 \\ 1 & 0\end{array}\right), A_{3}=\left(\begin{array}{cc}6 & -8 \\ -1 & -3\end{array}\right)\right\}$ is
Select one:
a. 3
b. 1
© c. 2

- d. 0

The correct answer is: 2

Question 25
Correct
Mark 1.00 out of 1.00

Question 26
Correct
Mark 1.00 out of 1.00

If A is a 4×6 matrix, then nullity of $A \geq 2$.

Select one:
a. False
© b. True

The correct answer is: True

If $v_{1}, v_{2}, \cdots, v_{k}$ are vectors in a vector space V, and $\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k}\right)=\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k-1}\right)$, then v_{k} can be written as alinear combination of $v_{1}, v_{2}, \cdots, v_{k-1}$

Select one:
a. False
© b. True

The correct answer is: True

Question 27
Incorrect
Mark 0.00 out of 1.00

Let $E=[3-x, 2+x], F=[1, x]$ be ordered bases for P_{2}. The transition matrix from E to F is
Select one:
a. $\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)$
b. $\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)$
(-) c. $\left(\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right)$
\times
d. $\left(\begin{array}{cc}-1 & 1 \\ 3 & 2\end{array}\right)$

The correct answer is: $\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)$

Question 28
Correct
Mark 1.00 out of 1.00

If A is a nonzero 4×2-matrix and $A x=0$ has infinitely many solutions, then $\operatorname{rank}(A)=$
Select one:
© a. 1
b. 4
c. 3
-d. 2

The correct answer is: 1

Question 29
Correct
Mark 1.00 out of 1.00

- 1.00

The transition matrix from the standard basis $S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]$ to the ordered basis $U=\left[u_{1}=\binom{1}{2}, u_{2}=\binom{3}{7}\right]$ is

Select one:
a. $T=\left(\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right)$
b. $T=\left(\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right)$
© c. $T=\left(\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right)$
d. $T=\left(\begin{array}{cc}-7 & 3 \\ 2 & -1\end{array}\right)$

The correct answer is: $T=\left(\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right)$

Question 30
Correct
Mark 1.00 out of 1.00

Let $S=\left\{p(x)=a x^{2}+b x+c \in P_{3}: \int_{0}^{1} p(x) d x=0\right\}$. The dimension of S is.
Select one:
a. 4
b. 3
©. 1

- d. 2

The correct answer is: 2

Question 31
Correct
Mark 1.00 out
of 1.00

Let A be a 4×3 matrix, and $\operatorname{nullity}(A)=0$, then
Select one:
a. the columns of A form a basis for \mathbb{R}^{4}
b. The rows of A are linearly independent
© c. The columns of A are linearly independent
d. $\operatorname{rank}(A)=1$

The correct answer is: The columns of A are linearly independent

Question 32

Correct
Mark 1.00 out
of 1.00
Let V be a vector space, $v_{1}, v_{2}, v_{3} \in V$ such that v_{1}, v_{2} are linearly independent, v_{2}, v_{3} are linearly independent, and v_{1}, v_{3} are linearly independent, then v_{1}, v_{2}, v_{3} are linearly independent.

Select one:

- a. False \downarrow
ob. True

The correct answer is: False

